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Introduction Data Acquisition Task And Benchmark
Collaborative perception cuts occlusions to boost driving accuracy. Aerial- Spatiotemporal Alignment Benchmark for V2V 3D object detection
Ground Collaborative Perception (AGCP) uses UAVs for top-down views AGC-Drive ensures spatiotemporal alignment using unified GPS UTC timestamps for time Table 3: 3D Detection Performance (%) on AGC-V2V.
that are easy to deploy, cost-effective, and flexible, enhancing blind spot synchronization and GPS/IMU data for initial ICP point cloud registration, followed by
coverage and long-range reasoning—vital for open roads and emergencies. frame-by-frame manual refinement. Co-Mode Model mAP@(0.5 mAP@(.7
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SyStem Scenario Coverage
AGC-Drive features a collaborative platform with 2 vehicles and 1 UAV. The The dataset encompasses 14 diverse scenarios, including urban, rural, and highway
vehicles are fitted with five cameras and one 128-beam LIDAR, while the environments, with 17% dynamic regions featuring vehicle cut-ins, cut-outs, and frequent
UAV is equipped with one 32-beam LIDAR and a forward-facing camera, lane changes.

enabling comprehensive multi-view perception across diverse driving
scenarios.
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